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Exact solution of Schrödinger equation with deformed
ring-shaped potential
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Exact solution of the Schrödinger equation with deformed ring-shaped potential is
obtained in the parabolic and spherical coordinates. The Nikiforov–Uvarov method is
used in the solution. Eigenfunctions and corresponding energy eigenvalues are calcu-
lated analytically. The agreement of our results is good.
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1. Introduction

The exact solutions of the Schrödinger equation with some well-known cen-
tral and noncentral potentials is an important subject in quantum mechanical
problems. Such solutions are helpful for checking and improving models and
numerical methods besides of understanding about the characteristics of a quan-
tum system. The exact solutions of this equation are possible only for certain
potentials such as Coulomb, Morse, Pöschl-Teller and harmonic oscillator, etc.
[1]. The other exactly solvable one is the deformed ring-shaped potential intro-
duced by Hartmann [2]. This potential involves an attractive Coulomb potential
with a repulsive inverse square potential one. In spherical coordinates it can be
defined as

V (r, θ) =
[

2
r

− qδ
a0

r2sin2θ

]
δσ 2a0ε0, (1)

where a0 and ε0 denote the Bohr radius and the ground state energy of the
hydrogen atom, respectively. δ and σ are positive real parameters as well. Their
range varies from 1 upto 10. This potential can be used in quantum chemistry
and nuclear physics to describe ring-shaped molecules like benzene and inter-
actions between deformed pair of nuclei. We point out that the potential takes
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Table 1
Energy levels for a hydrogen-like atom with δσ 2 = Z and q = 0.

m n + n′ En, n′ (our work) E [18] n̄

0 0 −13.605820 −13.60582 1
1 0
0 1 −3.401455 −3.40145 2
2 0
1 1 −1.511757 −1.51176 3
0 2
3 0
2 1
1 2 −0.850363 −0.85036 4
0 2
4 0
3 1
2 2 −0.544232 −0.54423 5
1 3
0 4
5 0
4 1
3 2
2 3 −0.377939 6
1 4
0 5

the form of the Coulomb potential in the limiting case δσ 2 = Z and q =
0 for hydrogen-like atoms (Table 1). The energy eigenvalues of the potential
has been calculated before by using some useful methods. For example, these
are a non-objective canonical transformation, namely, Kustaanheimo–Stiefel
(KS) transformation, dynamical group method, path integral and SUSYQM
method, etc. [2–17]. Moreover, this potential can be defined as a Coulomb plus
Aharonov–Bohm potential by defining the parameters as −ee′ = 2a0ε0δσ

2,
−A/2µ = qε0a

2
0δ

2σ 2 and B = 0. [18–20].
In the present work, we have obtained an exact solution of the Schrödinger

equation with the q-deformed ring-shaped potential by using the Nikiforov–
Uvarov (NU) method in both parabolic and spherical coordinates. The method
is based on the solution of differential equation transformed into the hypergeo-
metric type [21,22].

The paper is organized as follows: In section 2 we introduce the Nikiforov–
Uvarov method. In section 3 we apply the method to solve the Schrödinger
equation in both parabolic and spherical coordinates, respectively. In section 4
we present numerical results for Z = 1 and q = 0 with the conclusion.
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2. The Nikiforov–Uvarov Method

The Nikiforov–Uvarov method first reduces the second order differential
equations (ODEs) to the hypergeometric type with an appropriate coordinate
transformation x = x(s) as

d2
�(s)

ds2
+ τ̃ (s)

σ (s)

d�(s)

ds
+ σ̃ (s)

σ 2(s)
�(s) = 0, (2)

where σ(s) and σ̃ (s) are polynomials with at most second degree, and τ̃ (s) is a
polynomial with at most first degree [21,22]. If we take the following factoriza-
tion

�(s) = φ(s) y(s), (3)

the equation (2) takes the form [22]

σ(s)
d2

y(s)

ds2
+ τ(s)

dy(s)

ds
+ λy(s) = 0, (4)

where

σ(s) = π(s)
d
ds

(ln φ(s)), (5)

and

τ(s) = τ̃ (s) + 2π(s). (6)

Also, λ is given

λn + nτ
′ + [n(n − 1)σ ′′]

2
= 0, n = 0, 1, 2, . . . (7)

The energy eigenvalues can be calculated from the above equation. We first
have to determine π(s) and λ by defining

k = λ − π
′
(s). (8)

Solving the quadratic equation for π(s) with equation (8), we get

π(s) =
(

σ ′ − τ̃

2

)
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ . (9)

Here, π(s) is a polynomial with the parameter s and prime factors denote the
differentials at first degree. The determination of k is the essential point in the
calculation of π(s). It is obtained by setting the discriminant of the square root
to zero [22]. Therefore, we obtain a general quadratic equation for k.
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The determination of the wave function is now in order. We consider the
equation (5) and the Rodriguez relation

yn(s) = Cn

ρ(s)

dn

dsn
[σn(s) ρ(s)] , (10)

where Cn is normalization constant and the weight function ρ(s) satisfy the
following relation

d
ds

[σ(s) ρ(s)] = τ(s) ρ(s). (11)

Equation (10) refers to the classical orthogonal polynomials that have many
important properties especially orthogonality relation can be defined as∫ b

a

yn(s) ym(s)ρ(s) ds = 0, m �= n. (12)

3. Calculations

The Schrödinger equation in spherical coordinates becomes

∇2� + 2m

�2
[E − V (r, θ)] � = 0. (13)

We are first going to study for solution of the problem using parabolic coordi-
nates.

3.1. Parabolic coordinates

One can write the second type parabolic coordinates as [3,4,23]

x = ξη cos ϕ, y = ξη sin ϕ, and z = 1
2

(
η2 − ξ 2) , (14)

and

ξ η = r sin θ and r = 1
2

(
η2 + ξ 2) . (15)

If we write trial wave function in the following form [4]

�(ξ, η, ϕ) = 1√
ξη

u(ξ) v(η) eim′ϕ, (16)

one can get two-coupled differential equations

d2
u

dξ 2
− (ϒ2 − 1

4 )

ξ 2
u +

(
2mE

–h2

)
ξ 2u −

(
2m

–h2

)
µ1u = 0, (17)
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and

d2
v

dη2
− (ϒ2 − 1

4 )

η2
v +

(
2mE

–h2

)
η2v −

(
2m

–h2

)
µ2v = 0, (18)

where ϒ =
√

m′2 + qδ2σ 2 and µ1 = µ2 = 2σ 2 δ a0 ε0. We will first solve equa-
tion (17) and then easily get the other one.

By using the transformation s = ξ 2, equation (17) is therefore transformed
into the equation of hypergeometric type. Hence, we have

u′′(s) + 1
2s

u′(s) + 1
4s2

[−ε2s2 − α2
1s − β2] u(s) = 0, (19)

where ε2 = 2mE

–h2 , α2
1 = 2m

–h2 µ1 and β2 =
(

ϒ2 − 1
4

)
.

Comparing equation (19) with equation (2), we get

σ(s) = 2s, τ̃ (s) = 1, and σ̃ (s) = (−ε2s2 − α2
1s − β2) . (20)

Substituting these into equation (9), we write

π(s) = 1
2

± 1
2

√
4ε2s2 + (8k + 4α2

1)s + 4β2. (21)

The constant k can be determined from the condition that the discriminant of
the square root must be zero, so that

k1,2 = −1
2
α2

1 ± εβ. (22)

Hence the final result for equation (21) can be written as

π(s) = 1
2

±
{

(εs − β), for k = − 1
2α2

1 − εβ

(εs + β), for k = − 1
2α2

1 + εβ.
(23)

A proper value for π(s) is chosen, so that the function

τ(s) = 2(1 + β) − 2εs, (24)

must have a negative derivative [22]. From equation (7) we can obtain

λn = −1
2
α2

1 − ε − βε

= 2nε. (25)

Following the same procedure again one gets for equation (18) as

λn′ = −1
2
α2

2 − ε − βε

= 2n′ε. (26)
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By combining each side of the equations (25) and (26) we obtain energy
eigenvalues

En,n′ = −
[

δ2 σ 4

(n + n′ + 1 + β)2

]
ε0. n, n′ = 0, 1, 2 . . . (27)

This solution is identical for β � ϒ2 with the ones obtained before [3,4,6–9,13].
Now, we are going to determine the wave function. Considering equation

(3) and using equation (5) we get

φ(s) = sν/4 e− ε
2 s, (28)

where ν = 1 + 2β.
From the equations (11) and (10), we obtain

yn(s) = Cn

ρ(s)

dn

dsn
[sn ρ(s)] , (29)

with ρ(s) = s(ν−1)/2 e−εs . Equation (33) stands for the associated Laguerre poly-
nomials. That is

yn(s) ≡ Lβ
n(s), (30)

Hence we have found the wave function that belongs to the equation (17) as

un(ξ) = Cn sν/4 e− ε
2 s Lβ

n(s), (31)

with s = ξ 2. Similarly, we can also write the wave function for equation (18)

vn(η) = Cn′ sν/4 e− ε
2 s L

β

n′(s), (32)

with s = η2. Therefore, the total wave function takes

�n,n′,m′(ξ, η, ϕ) = 1√
ξ η

Cn,n′ sν/2 e−εs Lβ
n(s) L

β

n′(s) eim′ϕ, (33)

where the normalization constant Cn,n′ can be found from the equation (12) as

Cn,n′ =
√

4(n!)(n′)!
(n + β)! (n′ + β)!

, n, n′ = 0, 1, 2 . . . (34)

One can easily see that in the case of r sin θ = ξη, the problem reduces to
harmonic oscillator plus inverse square potential case. The latter, we have studied
that this problem also reduces to that of molecular Kratzer potential like (Cou-
lomb plus inverse square).
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3.2. Spherical coordinates

Considering equation (13) we write the total wave function as

�(r, θ, ϕ) = U(r)

r
�(θ) �(ϕ), (35)

with the well-known azimuthal angle solution

�(ϕ) = 1√
2π

eimϕ, m = 0, ±1, ±2, . . . (36)

Thus we get as

1
sin θ

d
dθ

(
sin θ

d�

dθ

)
+

(
κ − (m2 + b′)

sin2
θ

)
� = 0, (37)

and

d2
U

dr2
+ 2

γ

(
−E′ − a′

r
− κ

r2

)
U = 0, (38)

where E′ = 2mE

�2
, a′ = 2ma

�2
and b′ = 2mb

�2
, κ and m2 are also separation con-

stants.
Using the NU-method, we are going to solve them. By defining m′ =√

m2 + b in equation (37) and taking x = cos θ , it will have a form of hyper-
geometric type

d2
�

dx2
− 2x

(1 − x2)

d�

dx
+ 1

(1 − x2)2

[
κ(1 − x2) − m′2

]
�(x) = 0. (39)

Comparing it with equation (2), we get

σ(x) = x, τ̃ (x) = −2x, and σ̃ (x) = κ(1 − x2) − m′2. (40)

Substituting these into equation (9), we get

π(x) = ±
√

−(k + κ)(1 − x2) + m′2. (41)

The constant k is determined from the condition that the discriminant of the
square root must be zero. Thus, we find

π(x) =
{± m′, for k = κ

± m′ x, for k = κ − m′2.
(42)

A proper value for π(x) can be chosen, so that the function

τ(x) = −2(m′ + 1) x, (43)
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has a negative derivative. From equation (7) we can obtain

λn = κ − m′(m′ + 1)

= 2n (m′ + 1) + n (n − 1). (44)

Solving for κ, we have

κ = κn = �′(�′ + 1), (45)

where �′ = n + m′.
Now we are going to determine the wave function. From the equations (11)

and (10), we can write

yn(x) = Bn

ρ(x)

dn

dxn

[
(1 − x2)n+m′]

(46)

with ρ(x) = (1 − x2)m
′
. Therefore, equation (46) stands for Jacobi polynomial as

yn ≡ P (m′,m′)
n (x), (47)

where n = l′ − m′. The wave function becomes

�(x) = �l′,m′

= Cl′,m′ (1 − x2)m
′/2 P

(m′,m′)
l′−m′ (x) (48)

with x = cos θ (x ∈ [−1, 1]). Using equation (12), we get

C�′,m′ = 1
2m′

(�′ + 1)

√
2�′ + 1

2
(�′ − m′)!(�′ + m′)!. (49)

Let us now consider equation (38)

u′′(r) + 1
r2

[−E′r2 − a′r − κ
]
u(r) = 0, (50)

Comparing this equation with equation (2), we obtain

σ(r) = r, τ̃ (r) = 0, and σ̃ (r) = −E′r2 − a′r − κ. (51)

If we insert these into equation (9), one gets

π(r) = 1
2

±
√

4E′r2 + 4(k + a′)r + (1 + 4κ). (52)

We can determine the constant k by using the condition that discriminant of the
square root is zero, that is

k1,2 = −a′ ±
√

E′ (1 + 4κ). (53)
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Hence, the final form of the equation (52) for each value of k becomes

π(r) = 1
2

± 1
2




[2
√

E′r + √
1 + 4κ], for k = −a′ + √

E′(1 + 4κ)

[2
√

E′r − √
1 + 4κ], for k = −a′ − √

E′(1 + 4κ).

(54)

A proper value for π(r) is taken, so that the function

τ(r) = (1 + √
1 + 4κ) − 2

√
E′r, (55)

has a negative derivative. From equation (7), we can write

λn = −a′ −
√

E′(1 + 4κ) −
√

E′

= 2n
√

E′. (56)

Therefore, it gives us the energy eigenvalues of the radial equation with the
deformed ring-shaped potential

E =
[
−

(
δ2 σ 4

nr + �′ + 1

)2

ε0

]
, nr = 0, 1, 2, . . . (57)

where nr denotes the radial quantum number which belongs to the equation (38).
To determine the wave function, we consider the equations (3) and (5) for

obtaining

φ(r) = e−√
E′ r r(ν−1)/2, (58)

where ν = 1 + 2
√

1 + 4κ. Thus from the equations (11) and (10) we have

yn(r) = Bn

ρ(r)

dn

drn

[
σn(r) ρ(r)

]
(59)

with ρ(r) = e−√
E′r r(1−ν)/2. Equation (59) stands for associated Laguerre polyno-

mials, that is

yn(r) = Lk̄
n(r), (60)

where k̄ = (ν − 1)/2. The radial part wave function is written as

Un(r) = Cn e−√
E′r r k̄ Lk̄

n(r). (61)

By using the orthogonality condition, we can determine the coefficient as

Cn,k̄ =
√

n!

2(n + k̄)(n + k̄)!
, (62)
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with κ = �′(�′ + 1). Hence, the total wave function takes the form

�(r, θ, ϕ) = 1√
2π

Cn,k̄ C�′,m′
[
e−√

E′r r k̄ (sinθ)m
′

× P (m′,m′)
n (cosθ) Lk̄

n(r) eimϕ
]
. (63)

4. Conclusion and remarks

We have obtained the exact eigenfunctions and corresponding energy ei-
genvalues of the Schrödinger equation with the deformed ring-shaped potential
in both second type parabolic and also spherical coordinates by using the Nik-
iforov–Uvarov method. At first our problem reduces to the harmonic oscillator
plus inverse square potential, it also reduces to the problem that molecular Krat-
zer (Coulomb plus inverse square) one in second case. Results obtained in two
different coordinate systems are identical by following the conditions β � ϒ2 in
equation (27) and �′ = n+m′ in equation (57). Some numerical values of energy
for a hydrogen-like atom due to the attractive Coulomb potential are presented
in tabular form. The total wave functions, in both coordinates, are physical. They
behaves asymptotically. The agreement of our analytic and numerical results is
good.
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